团队成员-李松杰博士

2022-06-26 16:55:31

导师简介

河南南阳人,北京科技大学与日本国立物质材料研究所联合培养博士;2011-2014年于日本国立物质材料研究所,博士后;兼任教育部工程教育专业认证协会秘书;挂职江苏省靖江市生祠镇党委副书记;日本东北大学访问学者;郑州大学校级青年骨干教师;郑州大学杰出青年人才创新团队;河南省高等学校青年骨干教师;河南省自然科学基金优青资助;河南省教育厅学术技术带头人。

研究领域或方向

1.电化学 2.新型光催化材料设计与制备 3.环境中材料氢致断裂敏感性研究

主要成果主持国家自然科学基金项目等纵向四项,主持横向项目六项;发表SCI收录论文30余篇。

主要代表性论文

(1)Self-propagating high-temperature synthesis method reduces CO2to porous graphene as high-performance electrochemical electrode materials.Journal of alloys and compounds. 2022, 900, 163552.

(2)Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2hollow microspheres for high-performance lithium-sulfur batteries.Journal of Materials Science & Technology,2022,100, 216-223.

(3)Direct Z-scheme N-doped TiO2/MoS2HeterojunctionPhotocatalyst for Photodegradation of Methylene Blueunder Simulated Sunlight,ChemistrySelect,2021, 6, 181 –186.

(4)Dual-confined sulfur cathodes based on SnO2-decorated MoS2microboxes for long-life lithiumesulfur batteries. Electrochimica Acta, 2020, 340:135991.

(5)Hydrogenembrittlementbehavior ofultrahighstrengthmooringchainsteelevaluated by theslowstrainratetest.International Journal of Electrochemical Science,2019,14(3):2705-2713.

(6)Effect of austempering temperature on microstructure of ausferrite in austempered ductile iron.Materials Science and Technology,2019,35(11):1329-1336.

(7)Study of thehydrogendelayedfracture ofmooringchainsteel usingstrainratetesting.International Journal of Electrochemical Science,2019,14(9):9221-9230

(8)Preparation and adsorption properties of TiO2/MoS2nanocomposites. Mater. Res. Express,2019,6:055046

(9)Metastableω′-Fe3C carbide formed duringω-Fe3C particle coarsening in binary Fe-C alloys.J. Appl. Phys., 2019,125, 175112.

(10)Mo and P co-doped Ba5Ta4O15for hydrogen evolution under solar light. 2018,Phys. B, 541, 1-5.

(11)Highly efficient NaTaO3for visible light photocatalysis predicted from first principles. Sol Energ Mat Sol C, 2016, 149, 97-102.

(12)Band gap engineering of Ba5Nb4O15for efficient water splitting under visible light. J. Alloy. Comd, 2015, 644, 757-762.

(13)Single- and few-layer ZrS2as efficient photocatalysts for hydrogen production under visible light. Int. J. Hydrogen Energy, 2015, 40(45), 15503-15509.

(14)Morphology and Crystallography of Ausferrite in Austempered Ductile Iron. Metals,2017,7(7):238.

(15)Hydrogen entry behavior into iron and steels under atmospheric corrosion. ISIJ International, 2013, 53(6), 1062-1069.

(16)大気腐食による鉄と鋼への水素侵入挙動.鉄と鋼,2013, 99(11):651-658.

(17)Evaluation of delayed fracture property of outdoor-exposed high strength AISI 4135 steels. Corrosion Science, 2010, 52(10):3198-3204.

(18)Electrochemical Hydrogen Permeation Tests under Conventional Potentiostatic Hydrogen Charging Conditions for Hydrogen Embrittlement Study. ECS Transactions, 2017,75 (29) 23-31.

(19)Electrochemical hydrogen permeation test under controlled temperature and humidity after outdoor exposure at Beijing, Chongqing and Okinawa. ISIJ International, 2016, 56(3), 436-443.

(20)Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study. Corrosion reviews, 2016, 34(1-2), 103-112.

(21)北京,重慶および沖縄に室外暴露した試験片を用いた温湿度制御下の電気化学的水素透過試験.鉄と鋼,2017, 103 (2): 93-100

(22)Hydrogen entry into Fe and high strength steels under simulated atmospheric corrosion. Electrochim Acta, 2011, 56(4), 1799-1805.

(23)Studies of evaluation of hydrogen embrittlement property of high-strength steels with consideration of the effect of atmospheric corrosion. Metallurgical and Materials Transactions A, 2013, 44A(3), 1290-1300.

(24)Constant-load delayed fracture test of atmospherically corroded high strength steels. Applied Surface Science, 2011, 257(19), 8275-8281.

 

 

郑州大学 校风